BNL neutrino beam. Optimization and simulations

Milind Diwan
June 10

What was done

- Geant 3.0 simulations with details of horn geometry including materials.
- 180 m tunnel with 4 meter diameter
- Default parameters not quite the same as rest of report.
- pbeam study of parameters.

List of parameters for GEANT simulation

- target: radius: 3.2 mm, length: 60 cm, den:
 2.2 gm/cc
- beam: 28 GeV, radius: I mm
- horn: gap: I mm, H1length: 2.2m, H2length:
 I.5 m
- tunnel: radius: 2 m, length: 180 m, Air-filled
- 2 horn distance: 8.3 m

Flux: things to optimize

BNL Wide Band. Proton Energy = 28 GeV

- Total flux or event rate
- Width of flux: as wide as possible
- electron neutrino contamination: as low as possible.

Anti-neutrinos

BNL Wide Band. Proton Energy = 28 GeV

- Lower eventrate => 2 MW
- Much larger neutrino contamination.
- 30% of events due to wrong sign.

Canonical event rates

- I.12e22 protons, 500 kT, 2540 km
- Neutrinos: CC: 52000, NC: 17000
- Anti-neutrinos: CC: I4000, NC: 5400
- Assumes extrapolation as 1/2540**2

Concerns

- Uncertainty on total flux or event rate probably still 20-30%.
- Large (50%) uncertainty above 4 GeV.
- Is off-axis running at all possible ?
- Can all be addressed by more beam power.

Hadronic models

- Good news: less backg at low energy.
- Bad news: less signal at high energy.

Reconstructed v Energy (GeV)

20

0

Data on beam?

- E734 target Cu, different Horn design
- E734 data suggests enough flux at GeV

Ways to gain or lose high E flux

Same flux if vacuum; lose 3-5% in window. if 1/8" thick steel window

Tunnel dimensions

- Lose low E by making narrow
- Gain high E by making longer

Horn placement and current

- Lose Low E if current goes beyond 500 kA
- Gain high E by placing horn 2 farther. Third horn? But no He?

Target and beam dimension

beam rac

Target rad.

•	6 mm/2mm good
	compromise

 Must take care to control beam size.

		3mm	6mm	8mm			
	Imm	5.22 1.58	4.64 1.36	4.37 1.28			
	2mm	4.19 1.19	4.45 1.21	4.65 0.96			
	3mm	2.87 0.79	4.00 0.99	4.10 0.96			

Flux in arb. units
Top: tot. flux; bot:>3 GeV

Target placement and

- Lose low E if target pushed in
- Lose low E if gap too large

What needs to be done

- Much better understanding of hadronic production.
- Much more detail of shielding and tunnel shape in the simulation.
- New simulation with optimized choices for parameters.
- 5 physicists needed for 2 years to perform studies and interface with AGS